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A mathematical approach for the calculation of reaction
order for common solution phase reactions
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Abstract

This paper describes a mathematical procedure for the direct calculation of reaction orders for typical solution phase
reactions. The algorithm described has no dependence on reaction constants that are part of a formal rate expression, for
example the rate constant. All that is required is a data set containing a measured reaction rate and a corresponding time
interval or a corresponding reaction concentration. From this data set, the reaction order can be directly calculated from a
minimum of two data points. By systematic application of the mathematical procedure to a data set, changes in reaction order
can be deduced during the course of a reaction, be it integral or non-integral. Such application may be used to characterise
complex reaction schemes such as parallel and consecutive reactions or for reactions where there is a change in reaction order.
Data simulated from formal rate expressions have been used to illustrate the principles of the analysis and to examine the
limitations when used in conjunction with more complex reaction schemes. A procedure of systematic calculation of reaction
orders has been developed using a mathematical spreadsheet, MathCadTM version 2000 [http://www.mathcad.com].
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Where there is a desire to determine the chemical ki-
netics of a reaction, there is a requirement to determine
the dependency that the reaction rate has on the quan-
tity of material that is reacting. Zero order reactions are
a special case where the rate of reaction has no depen-
dency on the quantity of reactant. For all other reaction
schemes the reaction rate has some dependency on re-
actant quantity. The dependency on reaction quantity is
the quantity of reactant raised to a power (the reaction
order), which can in principle be any value, integral or
non-integral. Literature examples of non-integral or-
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ders are not in abundance, maybe as a result of the
difficulty in determining non-integral orders. How-
ever, there are some examples in the literature[1–4].
There are several approaches that have been success-
fully used for the calculation of reaction order in the
past. The method of integration was first used in 1850
by Wilhelmy[5] and then by Hardcourt and Esson[5].
The principle of this method is to construct a graph of
some function of concentration against time using a
linearised form of an integrated rate expression. Such
method of analysis, although widely used, is often re-
stricted to simple reaction orders where a linearised
expression of a rate equation can be determined. There
is a certain amount of subjective assessment of such
linear plots that may lead to falsely ascribing a reaction
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order. For example, a reaction having a reaction or-
der of 1.7 may fit the second order integrated equation
and so be miss-ascribed. In addition the data must be
tested using each linear form of equation for each re-
action order and an assessment of the best fit made.
The method of integration can also lead to difficulties
for bi-molecular reactions where the reaction orders
for each reacting specie is not equal to one, because
of the mathematical difficulties of integration of the
rate expression. Some of the more complex reaction
schemes have been discussed by Capellos and Bieski
[6]. A second approach is the differential method that
was first suggested by van’t Hoff in 1884[7]. This
method requires that rates of reactions are determined
from the initial slope of concentration–time graphs
at various concentrations of reactant. A double loga-
rithmic plot of ln rate versus ln concentration gives a
straight line of slope (n). This method can be adapted
so that the rate of reaction, at a given initial reac-
tant concentration, is studied as a function of time. By
comparing the reaction order calculated from the ini-
tial reaction rates to the reaction order determined as
a function of time, changes in reaction order can be
deduced. This method, too, has some limitations. The
first is that it may be difficult to ascertain the instan-
taneous rate of a reaction, and the second is that the
analysis tends to be time consuming. Miller[8] has
made reference to both these methods concluding that
the method of integration was one of “guess and try”
whereas the method of differentiation he stated as be-
ing “the method of systematic exploration”.

The purpose of this paper is to present a general
and rapid method for the calculation of reaction order
that provides many of the benefits of the methods pre-
viously described but offers a reduction in the com-
plexity and uncertainty of the previous methods. The
calculation does not rely on knowing any of the reac-
tion parameters for a reaction such as the rate constant.
In addition there are no constraints on the value of the
reaction order. At present this method has been ex-
plored through solution phase reaction schemes of the
type,

A → Z, A + B → Z, A + B + C + · · · → Z,

A → 2Z, 2A → Z, etc.

where there is a single reactant or where two or more
reactants are at equal or non-equal concentrations.

2. Theoretical

This paper focuses primarily on the relatively more
complex reaction schemes of the typeA + B → Z,
however, the principle of application is the same for
all type of reaction schemes.

Kinetic equations that describe solution phase reac-
tions are usually presented in the form of,

dx

dt
= k(A − x)m(B − x)n (1)

wherek is the rate constant,A and B are the initial
concentrations of reactants at time= 0, x the concen-
tration of reactant that has reacted at any time, dx/dt
the rate of reaction andm andn are the reaction or-
ders relative to the concentrationsA andB. During the
course of a reaction, the reaction rateΦ changes as a
function of the concentration of material that has re-
actedx. The remaining parameters inEq. (1)k, A, B,
m andn are unchanging providing there is no change
in reaction mechanism. To calculate a reaction order,
Eq. (1) can be simplified if the ratio of two reaction
rates from the same data set are considered. By select-
ing two values for the reaction rateΦ1 andΦ2 and
the corresponding reaction concentrationx1 andx2 for
an observed reaction, the ratio of this data pair can be
expressed as,

Φ1

Φ2
= k(A − x1)

m(B − x1)
n

k(A − x2)m(B − x2)n
(2)

This can be simplified to

Φ1

Φ2
= (A − x2)

m (B − x1)
n

(A − x2)m(B − x2)n
(3)

The only unknowns inEq. (3)are the reaction orders
m and n. The values form and n can be solved by
sequentially varying the values ofm and n until the
product for the right hand part ofEq. (3)is equal to the
ratio on the left hand side. This can be conveniently
done by varyingm from zero, in increments of 0.1, for
each 0.1 increment ofn. The results can be displayed
in a square matrix where rows represent values ofm
and columns values forn. The co-ordinates of a single
value in the matrix that is equal to the ratio of reaction
ratesΦ1/Φ2 gives the values of bothm andn. For ex-
ample the appropriate value ofΦ1/Φ2 for a reaction
of overall order of 2 for whichm = 1.5 andn = 0.5
will be found at the co-ordinates{row 15, column 5}
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in the matrix. By contrast, a reaction that has an over-
all order of 2, wherem = 1 andn = 1, the value of
Φ1/Φ2 will be found at the co-ordinates{row 11, col-
umn 11}, etc. This method of order calculation can
be extended so that the order is determined for every
data point within a data set. This is done using a three
dimensional matrix where the third dimension is the
number of data pairs in the data set. In this case the
x, y co-ordinates gives the values form andn whereas
the z co-ordinates gives the number of data pairs that
satisfies the requirements forEq. (3). The mathemat-
ical form of this process can be seen inEq. (4):

sumR,m,n =
�[

[(A − x1)R]mi

[(A − x2)R]mi

] [
[(B − x1)R]ni

[(B − x2)R]ni

]
(4)

whereR is a range variable from 1 to the total number
of data pairs in the data set,i a range variable that
encompasses the values of the reaction orders to be
tested, i.e. from 0 to 3 in increments of 0.1. A and
B are the start concentrations of the reactants,x1 and
x2 are the quantities of reaction per unit volume for
the corresponding reaction rates andm andn are the
reaction orders. The creation of a three-dimensional
matrix in this way allows a statistical evaluation of the
distribution of the reaction ordersm and n over the
entire data set, seeFig. 1.

Fig. 1. This graph shows a cubic matrix containing the co-ordinates
for values ofm andn that satisfyEq. (3)earlier. The data analysed
was a simulated data set of 100 data points and was assigned
values ofm and n as 0.5 and 1.5, respectively.

An algorithm for processing data and calculation
of the reaction order was written in MathCad version
2000 (a copy of the algorithm is available from the
author[9] and can be used in conjunction with Math-
Cad). The basic structure of the program is to import
two columns of data in the form of an ASCII file.
The x-column being the concentration of reactant that
has reacted and the y-column being the reaction rate.
Various combinations of data pairing can then be em-
ployed to obtain the correct reaction order.

3. Experimental/discussion

For the determination of a reaction order the kinetic
data for a reaction study is collected in the normal way.
For example, a reaction rate is followed by record-
ing absorbence, heat flow, quantitative assay, pH, etc.
collected over time or as a function of reaction con-
centration. Where data is in the form of reaction rate
as a function of time, this data can be changed to
rate versus reaction concentration by direct integra-
tion as the area under a plot of dx/dtversus time has
the units of moles dm−3, i.e. x. Therefore, dx/dtcan
be directly converted to dx/dtversusx. Alternatively,
for mono-molecular reactions the reaction order can
be determined directly from rate versus time data sets
[10].

For the analysis, choosing two values of reaction
rates can be arbitrary, however, a greater degree of ac-
curacy can be had if the values have maximum sepa-
ration, seeFig. 2. For the best separation between two
values of reaction rates for the entire data set, the first
data point in the rate column can be paired with the
51st data point (in a string of 100 data points), etc.

Simulated data sets were constructed to test the an-
alytical algorithm. Such data sets were derived from
Eq. (1) where different values of the rate constant,
reaction orderm and n and initial concentrationsA
and B were used. Values for the reaction rate were
thus derived by varying the reaction quantityx from
zero (time= 0) to the initial start concentrationA or
B, whichever is the smallest. As an example, a data
set was simulated using defined reaction parameters.
From the analysis of a section of data that made up
a 1/5 fraction of the total reaction, it was shown the
correct values form and n could be recovered, see
Fig. 3.
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Fig. 2. This shows a graph of a simulated reaction where the rate constant is 3.5× 10−4, m andn are 1.5 and 1, respectively andA andB
are 80 and 78 mM, respectively. Selection of two values of reaction rate, 15 and 2.5 mM s−1 give the corresponding reaction concentrations
as 7.6 and 43 mM.

Where the data is a “perfectly” simulated data set,
each value of the vector should match exactly with the
corresponding value in the matrix. A problem arises
when using “real” data where there may be some vari-
ability associated with the data set, for example instru-

Fig. 3. This shows a graph of a simulated data set that was collected over a 0.2 fraction of the total reaction. The values used to simulate
the data werek = 3.50× 10−3, A = 800 mM, B = 750 mM, m = 1.5 andn = 0.5. A total of 10 data points were used.

ment noise. The difficulty faced is how to match the
vector with the matrix if the corresponding values are
only similar but not necessarily exact. In an attempt to
solve this problem each column of the matrix was sub-
tracted from the corresponding rate ratio in the vector.
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Fig. 4. This shows the distribution of reaction orderm and n for
a simulated reaction where there is a 5% systematic and random
error added to the reaction rate. Values used to construct the
simulated data set arek = 3.5×10−4, m = 2, n = 1, A = 80 mM
and B = 78 mM. A total of 200 data points were analysed. The
distribution of the values form andn become more broad towards
the top of the graph where the relative distance between two
reaction rate data pairs becomes less.

Values closest to zero provide the co-ordinates of the
valuesm and n. The distribution of matches can be
plotted for each combination ofm and n to give a
statistical evaluation as to the number of data pairs in

Fig. 5. A graph showing a simulated data set where the reaction order changes from 2.5 to 2 over the course of the reaction.

the matrix that matched the rate ratios in the vector.
The distributions of the calculated values form andn
can thus be shown, seeFig. 4. Note that as a reaction
rate tends towards zero, there is an increase in the noise
to signal ratio and so there is a greater variability in
the calculated reaction orders.

4. Complex reaction schemes

A data set was simulated where the overall reaction
order was initially 2.5, 0.5 with respect toA and 2
with respect toB. Half way through the reaction the
order with respect toB changed to 1.5, seeFig. 5. This
data set was constructed by attaching two data sets
together. The first data set was constructed usingm =
0.5 andn = 2, and the second data set usedm = 0.5
andn = 1.5. The rate constant for the second data set
was adjusted so that the reaction rate at the start of the
second data set corresponded with the reaction rate at
the end of the first data set. The whole data set was
analysed by taking consecutive data pairs, i.e. the first
data point of the rate column was paired with the sec-
ond data point in the column.Fig. 6 shows the result-
ing analysis of such a reaction scheme, where for the
first half of the data set the reaction order conformed
with the reaction orderm = 0.5 andn = 2. There
is then an area where the reaction order is somewhat
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Fig. 6. The graph shows the results of analysis for a simulated
reaction where the reaction order changed fromm = 0.5 and
n = 2 to m = 0.5 andn = 1.5. The distribution of the reaction
orders calculated for each data pair in the data set can be seen to
change at about halfway through the data set.

random, followed by the second half of the data set
wherem = 0.5 andn = 1.5.

5. Conclusion

This method for deriving reaction orders, although
relatively straightforward, may be a significant contri-
bution to the kinetic analysis of reactions. The method
of analysis, described, can provide a direct and rapid
method for the calculation of reaction orders. Where
a process of sequential application to a complete data

set is applied, information about the distribution of re-
action orders for each data pair can be found. If the
data is “good”, i.e. free of significant noise, informa-
tion about changes in reaction order can be determined
by comparing a section of data at the beginning of a
data set with that at the middle and at the end.

The application of this method has been success-
fully applied to general forms of solution phase
reactions of relative simple soichiometries. It may
be possible, however, to extend this method to more
complex type reactions, for example where a re-
action tends towards an equilibrium or for solid
state type reactions. The application of this method
to such reaction types will be detailed in a future
publication.
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